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We obtain sufficient conditions on a real valued function f, continuous on
[0, +00), to insure that, for some nonnegative integer n, there is a nonnegative
number r(n) so that for any r ;> r(n), the polynomial of best approximation to
f on [0, rl from 'TTn is increasing and nonnegative on [r, +00). Here, 'TTn denotes
the set of all real polynomials of degree n or less. The proofs of Theorems 1 and
2 use only properties of Lagrange interpolation while that of Theorem 3 employs
results on the location of interpolation points in Chebyshev approximation.

1. INTRODUCTION

In this paper, we obtain sufficient conditions on a real-valued function f,
continuous on [0, +00), to insure that, for some nonnegative integer n,
there is a nonnegative number r(n) so that for any r ;> r(n), the polynomial
of best approximation to f on [0, r] from 7Tn is increasing and nonnegative
on [r, + 00). (Here, 7Tn denotes the set of all real polynomials of degree n
or less.)

The interest in this problem stems from a method of proof used in the
study of rational Chebyshev approximation to reciprocals of entire functions
as in [2], [3], and [4]. In fact, the proof of Theorem 5 in [3] uses the special

* Dedicated to Professor Alfred Brauer on his eightieth birthday, April 9, 1974.
t This research was supported in part by AEC Grant E(11-1)-2075.

285
Copyright © 1975 by Academic Press, Inc.
All rights of reproduction in any form reserved.



286 LING, ROULIER AND VARGA

case, Corollary I, of our Theorem 1. Namely, f is assumed there to be an
entire function all of whose Maclaurin coefficients are nonnegative.

However, we also feel that this is an interesting problem in its own right.
The proofs of Theorems 1 and 2 use only properties of Lagrange inter

polation while Theorem 3 uses results of Rowland [5] and [6] on the location
of the interpolation points in Chebyshev approximation.

2. CONSTRUCTION AND MAIN RESULTS

We begin by stating two lemmas whose proofs are elementary. The proof
of Lemma I follows easily from a finite Taylor series representation for fwith
remainder.

LEMMA I. Assume f E Cm[O, + (0), m ~ 0, satisfies j(m)(x) ~ Bm > 0
for all x ~ O. Then, for each integer j with 0 ~ j ~ m, the quantity rj(f) =
inf{t ~ O:j(jl(x) > 0 on (t, +oo)} is finite.

The proof of Lemma 2 below follows easily from expanding the inter
polating polynomial in Newton interpolation form, and using known
properties of divided differences.

LEMMA 2. Assume f E Cm[O, + (0), m ~ O. Then, the following are
equivalent:

(i) j<ml(X) ~ Bm > 0 for all x ~ 0;

(ii) any polynomial Pm E 7Tm which interpolates f in any m + I finite
points (counting multiplicities) 01[0, + (0) satisfies p<;: l(x) ~ Bm > Ofor all x.

We remark that if Pm interpolates f E Cm[O, + (0) in a finite point X o ~ 0
with multiplicity k, 1 ~ k ~ m + 1, then, as is customary, this means that
(f - PmYi)(xo) = 0 for all 0 ~ i ~ k - 1.

Next, given f E Cm[O, + (0) with j<ml(x) ~ Bm > 0 for all x E [0, + (0),
let the finite numbers rJC!), 0 ~ j ~ m, be defined as in Lemma I, and define
the nonnegative quantity Cm by

Cm == - min [minj(j)(x); 0] ~ O.
O~j~m x~O

(1)

Note that if all rj(f), 0 ~ j ~ m, are zero, so is Cm . We then consider the
particular polynomials Hj,m E 7Tj , defined for 0 ~ j ~ m by

B Xi j-l Xi B
Hj.m(x) ==~ - Cm L ( _. + .) , ' j > 0; Ho,m(x) == m~.· (2)m. i~O m ] I.
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LEMMA 3. There exists a least nonnegative real number Gj,m such that
H?],,(x) > °for all x E (Gj,m, +00) and all °~ i ~ j. Moreover, Gj,m =

maxO(:i(:j Gi,m , and

. <: Imax(m - 1;jmCm/Bm); Cm > o~'
Glom ~ l ° .C = °.\ , m

Proof Of course, we can choose Gj,m = ° if Cm = 0. In particular,
we set Go. m = 0. Fixing j > 0, if Cm > 0, then by Descartes' rule of signs,
Hj,m(x) has exactly one positive zero, which we define as Gj,m . A classical
result of Cauchy tcf. [I, p. 95]) states that all zeros i\ of Hj,m satisfy
I i\ I ~ Gj,m . But, if the zeros i\ of Hj,m all lie in the disk {z: I z I ~ Gj,m}, so
does their convex hull. Consequently, by the Gauss-Lucas Theorem
(cf. [I, p. 14]), all the zeros p, of any HJ~]", i ~ 0, also satisfy Ip, I ~ Gj,m'
Thus, Ht],,(x) is of one sign on (Gj,m , +00) and hence positive there for each°~ i ~j.

To obtain the upper bound for Gj,m when Cm > 0, first note that

x j - I x j - i

(m - 1)! ~ (m - i)! for I ~ i ~ j

is valid for any x ~ m - 1. Thus, on adding the above inequalities,

jxj-I j-I Xi

(m - I)! ~ to (m - j + i)! .

Hence, Hj,m(x) ~ (Bmxj/m!) - jCmxH/tm - I)! = (xH/m!)[Bmx - jmCml
for any x ~ m - 1 and Cm > 0. Since the term in brackets is nonnegative for
x ~ jmCm/Bm , then Hj,m(x) ~ °for all x ~ max{m - I, (jmCm/Bm)}. But
as Hj,m(x) ~ °for x ~ °only if x ~ Gj,m , then

<: \max(m - l;jmCm/Bm); Cm > 0/
Gj,m ~ l ° .C = 0\'

~ ,m '

Finally, it follows from (2) that

Hj,m(x) = xHj_l,m(x) - Cm/(m - j)! .

Since Hj-lom(Gj-l,m) = 0, then Hj,m(Gj-lom) = -Cm/(m - j)! ~ 0, whence
Gj-lom ~ Gj,m . Thus, Gj,m = maXO(:i(:j Gi,m . Q.E.D.

This brings us to

THEOREM I. Assume f E Cm[O, + OCJ), m ~ 0, satisfies pml(x) ~ Bm > °
for all x ~ 0, and set rem) = rm* + Gm,m, where rm* == maxO(:j(:m (ri!)),
the quantities rj(f) and Gm,m being defined respectively in Lemmas 1 and 3.
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Then, for any r ~ r(m), any polynomial Pm E TTm which interpolatesfin m + I
points (counting multiplicities) of [0, r] satisfies

for all x > r, all O:S::; i :S::; m. (3)

Moreover, the quantity r(m) can be bounded above by

(4)

Before proving Theorem I, several comments can be made. First, for any
r ~ 0, if Pm interpolatesfin m + I points of [0, r], it follows from Lemma 2
that p<;:l ~ Bm > 0. Thus, applying Lemma I to Pm gives us the existence
of the least nonnegative real numbers rJ<Pm) ~ °such that p:,{>(x) > °on
(rj( Pm), + 00) for each °:S::;) :S::; m. Hence, p~>(x) > °on (Rm , +CIJ) for all°:S::; i :S::; m, where Rm == maxO«j«m rJ< Pm), but it is in general possible that
Rm > r. If Rm > r, then the desired strictly increasing nature (3) of the
interpolant Pm takes place not immediately to the right of the interpolation
interval [0, r], but on (Rm , +CIJ). Thus, the major point in Theorem I is that
it is possible to select r ~ °sufficiently large such that Rm :S::; r, regardless
of the interpolation points in [0, r]. Another point of Theorem I is that an
upper bound for r(m) is given in (4).

Proof For r ~ r(m), consider any Pm E TTm which interpolates f in any
m + I points (counting multiplicities) in [0, r], and label these interpolation
points

Using the convention throughout that n:~o (x - Xi) = I, whenever k < 0,
we first express Pm in Newton interpolation series form, i.e.,

m j-l

Pm(x) = L aj TI (x - x;)
j=O i=O

(5)

where ][XO , Xl '00" Xj], ) > I, is the divided difference of f in the points
Xo , Xl '00" Xj , and f[xo] == ](xo). For any I :S::;) :S::; m, it is well-known that
f[xo , Xl '00" Xj] = ](;)(O/)!, where Xj < ~; < X o if Xj < Xo , and gj = X o if
Xj = X o . Next, for each i with°:S::; i :S::; m, we analyze the i + I "right-most"
terms of Pm , by defining

i i

Pi.m(x) = am TI (x - Xm_j) + am- l TI (x - xm-;) + ... + am-i , (6)
;~l ;~2
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so that Pi,m E 7Ti for each 0 :::;: i :::;: m, and also Pm,m(x) == Pm(X) (cf. (5». In
addition, it follows from (6) that, for m > 0,

1 :::;: i :::;: m, (7)

so that (6) and (7) in essence represent a Horner-like method for recursively
defining Pm(x).

By hypothesis, Po,m(x) = am = j[xo , Xl'"'' Xm] ~ j<m)(~m)jm! ? Bm/m! .
Thus, from the definition in (2), then

Po,m(X) ~ Ho,m(x) = Bm/m! > 0 for all X > r. (8)

Next, for m > 0, consider Pl,m(x) = Po,m(x) . (x - xrn- l ) + am-I, where
am- l = j[xo , Xl'"'' Xm- l ] = j<m-l)(~m_l)/(m - I)!, with X m- l :::;: ~m-l :::;: Xo'
Two cases arise.

Case I. rm*:::;: Xm- l .
In this case, it follows from the definition of rm * in the statement of

Theorem 1 that am- l ~ O. Thus, using (8), we deduce that P1.m(x) ~
Po,m(x) . (x - Xm-l) > 0 for all X > r, and that pe~(x) = Po.m(x) > 0 for
all x > r, i.e.,

for all x > r and for all 0:::;: i :::;: 1.

Case 2. Xm- l < rm*.
In this case, for x > r, then x - Xm- l > r - rm* ~ U m.m . Next, if

~m-l ~ rrn-l(f), then am- l ~ 0 and we can surely bound am- l below by
am- l ~ -C"J(m - I)! . If ~m-l < rm-l(f), the previous inequality still holds
from the definition of Crn . Thus, from (8),

Pl,m(X) = Po,m(x) . (x - x m_l ) + am- l ~ (Bmum,m)/m! + arn- l

~ (Bmum,m)/m! - Crn/(m - I)! "= Hl,m(urn,m) > 0,

the last inequality following from the fact that Ul,m :::;:um,m (cf. Lemma 3), and
the definition of Ul,m . Upon differentiating, we further see, as in the previous
case, that

P
w (x) > 0l,rn for all x > rand 0 ~ i ~ I.

The inductive step is now clear. Assuming for m > 0 that

WPH,m(X) > 0

and that

for all x > r and all 0 ~ i ~ j - 1, (9)

for all X> r if X",-(j-l) < r",*, (10)
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we then consider Pi,m(X) = Pi-l,m(X) . (x - Xm-i) + am-i' Recalling that
am-i = j[xo , Xl"'" Xm-i] = Pm-il(gm_i)/(m - j)!, two cases similarly arise.

Case 1. rm* ~ xm-i'
In this case, it again follows from the definition of rm* that am-i ~ O. Hence,

Pi.m(x) ~ Pi-l,m(X) . (x - Xm-i) > 0 for all x > r from i = 0 of (9).
Moreover, since in general

(i) ( ) (i) () ( ) + . (i-I) ( )Pi,m X = Pi-l,m X . X - Xm-i IPi-l,m X for any i ~ 1, (11)

it follows from the inductive hypothesis of (9) that

p;~~(x) > 0 for all x> r and all 0 ~ i ~j.

Case 2. Xm-i < rm*.
In this case, for x > r then x - Xm-i > r - rm* ~ Gm,m' With the

inductive hypothesis of (10), then for x > r,

Pi.m(x) = Pi-l,m(X) . (x - xm_;) + am-i

~ Hi-l,m(Gm,m) . Gm,m - Cm/(m - j)!

but, as this last sum of two terms is, from {2), just Hi,m(Gm,m), then

for all x > r if Xm-i < rm *.

Again, using (11) and the inductive hypothesis of (9), we see that

P(i) (x) > 0J,rn for all x > r and all 0 ~ i ~ j.

This completes the induction. Thus, since Pm(x) == Pm,m(x), then

p~>CX) > 0 for all x > r and all 0 ~ i ~ m. Q.E,D.

(12)

Of course, if f E cm[o, + r:fJ) satisfies the hypothesis of Theorem 1 and
moreover has j(j)(O) ~ 0 for all 0 ~ j ~ m, then rem) can be chosen to be
zero in Theorem 1. This gives us the following.

COROLLARY 1. Assume fE cm[o, +(0), m ~ 0, that prn)(x) ~ Brn > 0
for all x ~ 0, and that j(j)(O) ~ 0 for all 0 ~ j ~ m. Then,for any r ~ 0, any
polynomial Pm E TTm which interpolates f in any m + 1 points (counting
multiplicities) of [0, r] satisfies (3).

Next, given f E Coco [0, + (0), suppose that there exists a strictly increasing
sequence {nk}~~O of nonnegative integers such that

for each nonnegative integer k, there exists a real number

Bnk > 0 such thatj(nk)(x) ~ Bnk > 0 for all x ~ O.
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Clearly, we can apply Theorem 1 toffor each m = nk, and thus, we deduce
that, for each k ?: 0, there is a real number r(nk) such that for any r ?: r(nk),
any polynomial Pn

k
E 7Tn" which interpolates f in any nk + 1 points in [0, r],

satisfies

p~~(x) > ° for all x > r and all 0:(; i :( nk . (13)

Actually, what we are interested in is the manner in which the numbers r(nk)
increase with k. Of course, Theorem 1 directly provides an upper bound for
each r(nk), but, as we now show, the existence of lower derivatives strictly
positive on [0, 00) allows us to sharpen the upper bound (4) of Theorem 1
for r(nk ). Specifically, in analogy with (1) and (2), we introduce the notation

Cn ~ - min [minf(j)(x); 0] ?: 0, s = 0, 1,... ,
8' n.'_1+1<j~n8 x-;?o

L s = n" - (n s- 1 + 1) ?: 0, s = 0, 1,... ,

and, for °:(j :( L s ,

where we set n_1 = -1.
We then have the following.

(14)

(15)

(16)

THEOREM 2. Let f be a real-valued function in Coo[0, +OCJ), and let {nk}~=O

be a strictly increasing sequence ofnonnegative integers for which (12) is valid.
Then, for each nonnegative integer k, there is a real number r(nk) such that for
any r ?: r(nk), any polynomial Pn E 7Tn which interpolates f in any nk + 1

k k

points (counting multiplicities) of [0, r] satisfies

p~~(x) > ° for all x > r and all 0:(; i :(; nk .

(17)

Moreover, with r;;k - maxO<;;i<;;n
k
(rlf), the quantities rif) being defined in

Lemma 1, then

( ) ,,;:: * + Ins max(1; LsCn.lBn,); Cn, > 01
r nk "" rnk max ° .CO'O~s~k , n s =

Proof As previously mentioned, the existence of such an r(nk) is guaran
teed by Theorem 1. It remains then to establish the upper bound for r(nk)
in (17).
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For any r ;;?: r(nk), consider any Pnk E TTnk which interpolates f in any
nk + 1 points (counting multiplicities) of [0, r]. As in the proof of Theorem 1,
label these points

Expressing Pn in Newton interpolation series form,
k

n,c j-l

Pn/x ) = L aj n (x - Xi)
j~O i~O

with aj = f[xo , Xl'"'' Xj],

we then write Pn in the form
k

k

Pnk(X) = L Q,(x),
S~O

nil j-I

where Qs(x) =:0 L aj n(x - Xi)'
j=n._1+1 i=O

and where n_l = -1. Note that Qs E TT n • Then, writing Qs as,

(x - Xi),
n" i-I

where RsCx) =:0 L aj n
j=ns_1+1 i=ns_1+1

nS-l

QsCx) = n (x - Xj) , R,(x),
j~O

(18)

we note that ([1;':01 (x - Xj»(i) > 0 on (r, + (0) for all 0 ~ i ~ nS - l + 1.
Next, with the definition of L s in (15), it follows that R s E TTL , and hence,
it suffices to show that R~i)(X) > 0 for all x E (r, co) and for all'O ~ i ~ L s ,

for, using the chain rule for differentiation of a product, this will imply
that the product Qs , as given in (18), then satisfies mi)(x) > 0 for all x > r
and all 0 ~ i ~ ns '

To show that R~i)(X) > 0 for all x > r and for all 0 ~ i ~ L s , we now
simply modify the proof of Theorem 1. Let aj,n. ' as guaranteed by Lemma 3,
be the least nonnegative real number such that HJ:h,(x) > 0 for all x > aj,n,
and for all 0 ~ i ~ j, where Hj,n, is defined in (16). The proof of Lemma 3
easily shows that

./' ln s max(l;jCn IBn); Cn > 01a .:::::...... 8 8 S

j.n, "" 0 ; Cn, = 0 '

and that aj,n, = maxO(;i(;j ai.n, . Thus,

./' 'ns max(1; LsCn IBn); Cn > 0/
a = max a. ",,' , , s

L•• n s O,,;;i";;L. ,.n. "" I 0 ; Cn = oj',
(19)

Then, directly applying the inductive proof of Theorem 1 to R s , rather than
to Pn , shows that we can set r(nk) = r: + maxO<;;s<;;k (aL ,ns), and the

• k.

desired result of (17) then follows from (19). Q.E.D.
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3. CHEBYSHEV ApPROXIMAnON
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As mentioned earlier, iff satisfies the assumptions of Theorem I, then the
polynomial Pm* E 7Tm of best Chebyshev approximation tof on [0, r] from 7Tm
surely satisfies the conclusion (3) of Theorem I, since Pm* interpolates fin at
least m -+- I distinct points of [0, r]. In contrast with Theorem 1 which only
uses interpolation by polynomials, the next result makes specific use of
polynomials of best approximation.

THEOREM 3. Assume f E Cm -I1 [O, -+- (0), m ;:;:: 0, is such that j(mc1)(x) is

positive and strictly increasing on (0, -+- (0), and set

(20)

where rm* c'= maXO';;j';;m (rj(f», the quantities rj(f) being defined in Lemma l.
Then, for any r ;:;:: rem), the polynomial Pm * E 7Tm of best approximation to f
on [0, r] from 7Tm satisfies

for all x > r and all °~ i ~ m. (21)

Proof Let Pm* E 7Tmbe the polynomial of best Chebyshev approximation
to f on [0, r] from 7Tm • Now, Pm* interpolates f in at least m -+- 1 distinct
points of [0, r]. But, the hypothesis that j<m+1)(x) > °on (0, (0) gives, from
Rowland [5, Corollary 2.3 and Theorem 2.2], that Pm* interpolates f in
precisely m -+- 1 distinct points of [0, r]. We label these points {xk)};,n=o where

°< xo(r) < x1(r) < ... < xm(r) ~ r.

Next, with the result of Rowland [6, Theorem 3.3], it directly follows, because
pm+1l(x) is by hypothesis positive and strictly increasing on (0, r), that

w,.(r)==!:..)/1-+-COS(m-+-1-k)7T)l < ()• 2 "" m -+- I ) Xle r

Tn particular, the case k = °above gives

for all °~ k ~ m.

. - r \ (7T)1Ho(r) - 2 II - cos 2m -+- 2 <: xir) for all °~ k ~ m.

With rm* == maxO';;;';;m (r;(f», then wo(r);:;:: rm* is equivalent to r;:;::
2rm */{1 - cos(7T/(2m -+- 2m == rem) from (20). Hence, for any r;:;:: rem),

for all 0 ~ k ~ m. (22)
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Now, if we express, as before, Pm* in Newton interpolation series form, i.e.,

m i~l

Pm*(X) = L Gj TI (x- x;(r))
j~O i~O

with Gj == f[xo(r), ... , xlr)], (23)

then Gj = f(j)(gj)/j! with xo(r) < gj < xlr) for all 1 ~ j ~ m, and
Go = f(xo(r)). Hence, for any r ;:::: f(m), it follows from (22) and the definition
of rm * that Gj > °for all °~ j ~ m. Thus, differentiating the expression
for Pm* in (23) then yields

for all x > r and all °~ i ~ m. Q.E.D.

4. EXAMPLES AND REMARKS

As in the transition from Theorem I to Theorem 2, we can apply
Theorem 3 to the case wherefE C"'[O, +00), and where {nk}~=O is a strictly
increasing sequence of nonnegative integers for which ftnk+l)(x) is positive
and strictly increasing on (0, + 00) for each k = 0, 1, .... If we further assume
thatfis such that SUPj;>O (rl!)) ~ R < 00, it follows from Theorem 3 that,
for each k ;:::: 0, the polynomial P~k E 71'nk of best approximation to f on [0, r]
from 71'n. satisfies

for all x > r and all °~ i ~ nk ,

where r ;:::: 2R/{1 - cos(71'/(2nk + 2))} ;:::: f(nk)' In this situation, these upper
bounds for f(nk) are m(nk2) as k -- 00.

Similarly, if fE C"'[O, +00) is such that SUPj;>o (rj(j)) ~ R < 00, and if
SUPk;>O (LkCn /Bn ) ~ D < 00, D ;:::: I, then it follows from Theorem 2 that,

k k

for each k ;:::: 0, any polynomial Pn E 71'n which interpolates f in any nk + 1
k k

points (counting multiplicities) of [0, r] satisfies

for all x > r and all °~ i ~ nk ,

where r ;:::: R + Dnk ;:::: r(nk)' Thus, in this case, these upper bounds for r(nk)
are m(nk ) as k -- 00.

We now apply the above remarks to the specific function

f(x) = eX + e~ cos x, ex < InC v2) + (371'/4) ~ 2.703.

On differentiating f, one sees that Theorem 2 is applicable for the sequence
no = 0, nl = 3, n2 = 4, na = 7, n4 = 8, etc. On the other hand, Theorem 3
will apply with the sequence no = 2, nl = 6, n2 = 10, etc. Thus, Theorem 2
and 3 are independent and interlace here.
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